

Volcanic rocks as petroleum reservoirs and their role in the emerging renewable energy industry

Dr Alan Bischoff University of Canterbury, New Zealand

2020 Summer Academic Lecture activity for Graduate Students China University of Petroleum

Presentation Outline

Part 1 Igneous rocks and magmatic processes

- 1- Genesis of igneous rocks
- 2- Volcanic and sub-volcanic environments
- 3- Classification of igneous rocks

1- Genesis of igneous rocks

Partial melting of the lower crust and upper mantle

decompression melting

fluid-induced melting

1- Genesis of igneous rocks

Eruption

Granite: batholiths, large plutons

Diabase: dikes and sills

Migmatite: partial melting

Burchardt, 2009

Viscosity: resistance to flow. Mainly controlled by the chemical composition of the magma.

Mafic magmas, lower silica (basalt). Low viscosity (runny) Felsic magmas, high silica (rhyolite). High viscosity (sticky)

1- Genesis of igneous rocks

Explosivity: Magmas with low viscosity allow gas to escape more <u>easily</u> = less explosive

low gas content + fluidal lava quiet eruptions

high gas content + sticky lava explosive eruptions

2- Volcanic and sub-volcanic environments

Pyroclastic

Aphanitic, coherent

Autoclastic

Medium-grained phaneritic

Coarse-grained phaneritic

Heaven Lake, Changbaishan volcano, China.

验

肘越

1 and **2** - Genesis and environments of igneous rocks: TAKE-HOME MESSAGE

Igneous rocks form by PARTIAL MELTING

decompression

fluid-induced

Magma that crystalizes below the surface form phaneritic intrusive rocks

Magma that crystalizes above the surface form aphanitic extrusive rocks

Eruptions can be

Explosive

Effusive

Pyroclastic

Coherent lava

autoclastic lava

Textural: grain-size

(a)

Grain-size classification				
Hand specimen usage		Thin-section usage		
Groundmass crystals can be identified with naked eye	Coarse-grained	3 mm		
Individual groundmass crystals are too small to <i>identify</i> with naked eye	Medium-grained			
Individual groundmass crystals are too small to <i>see</i> with the naked eye (= aphanitic)	Fine-grained	1 mm NB Very fine-grained and glassy rocks may (in hand		
	Glassy (hyaline)	specimen) look anomalously dark for their composition, or even black.		

NB 'Fine-grained' refers to the size of groundmass crystals, not phenocrysts.

Coarse-grained phaneritic

Aphanitic

Porphyritic

Textural: particle fragmentation

Coherent

a unified whole solidified product of magma

Autoclastic fragments form by mechanical friction during movement of lava and breakage of cool brittle outer margins

Pyroclastic form by fragmentation of magma and country rocks, as gases are released by decompression and then ejected from a volcanic vent

Clastic

Hydroclasts form by steam explosions from magma-water interactions

Epiclasts are sediments derived from erosion of volcanoes or ancient volcanic terrains

Classification of pyroclastic rocks using size abundances

Classification of pyroclastic rocks using fragment composition

Pettijohn, 1975

Cinder or tephra: volcanic fragments, typically of pyroclastic material

Unwelded pyroclastic

Spatter: blobs of lava thrown into the air and deposited near a vent

Welded pyroclastic

Textural: vesicularity, result of gas trapped in the melt at the time of solidification

Vesicular volcanic rock

Massive volcanic rock

Clastic volcanic rock

Structural: massive, fractured, banded, layered

Massive volcanic rock

Banded volcanic rock

Layered volcanic rock

Fractured volcanic rock

Colour index: volume proportions of light (felsic) and dark (mafic)

Leucocratic, felsic, phaneritic. Typically granites

Melanocratic, mafic, phaneritic. Typically gabbros

Holomelanocratic, ultramafic, phaneritic. Typically peridotites

Leucocratic, felsic, aphanitic Typically rhyolites

Melanocratic, mafic, aphanitic. Typically basalts

Holomelanocratic, ultramafic, aphanitic. Typically Komatiites

QAPF modal classification. Perceptual of quartz, plagioclase, k-feldspar and feldspathoid minerals

Plutonic or intrusive rocks

Streckeisen, 1976

Streckeisen, 1976

Chemical

(c)		Chemical classification of igneous rocks					
Ultrabasic		Basic Intermediate			Acid / Acidic		
40	45	50 5 Mass	2 55 % of SiO ₂	60 in rock	63	65	70

Le Maitre et al., 2002

Genetic classification of volcanic rocks

Epiclastic

3- Classification of igneous rocks: TAKE-HOME MESSAGE

Part 2 Volcanic rocks as petroleum reservoirs

1- Global distribution

2- Types of volcanic reservoirs

3- Petrophysical controls

Global distribution of igneous rocks in sedimentary basins

Senger et al., 2017

Examples of O&G fields associated with volcanoes

Location	Basin/Field	O&G volume	Reservoirs
USA	Sheep Basin	100 Kbbl	pyroclastic rocks
Greenland	Nussauq Basin	50 Mbbl	vesicular basalts
Indonesia	Krishna Field	200 Mbbl	limestone draping volcano
Algeria	llizi Basin	400 Mbbl	sandstone over intrusion
Myanmar	Yadana Field	5 tcf	limestone draping volcano
Brazil	Pão de Açúcar Field	700 Mbbl and 3 tcf	limestone draping volcano and pillow-lavas
Indonesia	Jatibarang Field	1.2 Gbbl and 2.7 tcf	fractured basalts
China	Songliao Basin	14 tcf	volcanic reservoirs
Brazil	Lula and Mero fields	> 10 Gbbl	limestone associated with volcanic rocks and hydrothermal activity

Pyroclastic rock exhuming oil, Kora Volcano, New Zealand

Note: oil volumes follow the International System of Units (SI)

K: thousand M: million G: billion Tcf: trillion cubic feet

Concepts: volcanic reservoirs, seals, traps

Measuring porosity and permeability

Pulse Decay Permeameter

$$kgas = \left(\frac{2nL}{A}\right) \left(\frac{V_{up}}{P_{up}^2 - P_{down}^2}\right) \left(\frac{\Delta P_{up}}{\Delta t}\right)$$

φ and k result

Concepts: Porosity and permeability

Pyroclastic volcanic reservoir

Pyroclastic volcanic seal

ф: 46.97 % k: 798 mD

φ: 3.42 % K: 0.006 mD

φ: 57.44 % k: 0.11 mD

Petrophysical global databank

 φ and k from 3811 samples of volcanic rocks globally distribute and from a range of depths

Primary controls in the porosity and permeability of volcanic rocks **Material fragmentation**

Pyroclastic andesite

ф: 46.97 % k: 798 mD

Coherent lava andesite

φ: 3.42 % K: 0.006 mD

Primary controls in the porosity and permeability of volcanic rocks **Vesicles**

Vesicular pyroclastic rock

φ: 57.44 % k: 0.11 mD

Vesicular lavas

Planke et al., 2019

Primary controls in the porosity and permeability of volcanic rocks **Fracturing**

PhD student Marcos Rossetti

Primary controls in the porosity and permeability of volcanic rocks **Pore type and shape**

$\boldsymbol{\varphi}$ and k of pyroclastic rocks

Machine

Learning

Algorithms

PhD student Hanfei Wang

Fracture porosity: 7.3 %

Mineral dissolution: 14.8 %

Matrix porosity: 7%

Secondary controls in the porosity and permeability of volcanic rocks Cementation and mineral alteration

Cemented lapilli tuff

Altered lapilli tuff

Primary and secondary controls are equally important in the porosity and permeability of volcanic rocks

Fracture porosity: 7.3 %

Machine Learning Algorithms

Pyroclastic volcanic reservoir

Pyroclastic volcanic seal

Cemented lapilli tuff

ф: 46.97 % k: 798 mD

φ: 57.44 % k: 0.11 mD

Altered lapilli tuff

Part 3 Modern interpretation of buried volcanic systems

1- Seismic reflection interpretation

Volcanoes buried in sedimentary basins

Seismic reflection

Drilling operations

Modern seismic: from 2D to 3D visualization

Kora Volcanic Edifice, Taranaki Basin

Average quality 2D seismic line from the 2000's

Swarm of saucer

intrusions

Excellent quality 2D seismic line from the early 1980's

Modern seismic: from 2D to 3D visualization

Kora Volcanic Edifice, Taranaki Basin

Excellent quality 2D seismic line from the early 1980's

Geobody extraction

Geobody extraction

Geoprobe

Saucers sills in the Canterbury Basin

Seismic reflection interpretation of buried volcanic systems: TAKE-HOME MESSAGE

Part 4 Emerging renewable energy industry

1- Global energy scenario

2- Geoenergy

3- Types of geoenergy resources related with volcanic systems

Rationale

International Energy Outlook 2019

Primary energy consumption by energy source, world quadrillion British thermal units 300 projections history 250

renewables petroleum and other liquids natural gas

Present energy consumption in New Zealand by source type

What is Geoenergy?

Geoenergy is energy derived from, or storage in, the earth.

Fossil fuels: coal, peat, oil and gas.

Geothermal energy. Heat generated by radioactive decay or at volcanic regions.

Energy technologies that interact with the subsurface: Carbon Capture, Utilization and Storage (CCUS), Compressed Air Energy Storage (CAES), Underground Hydrogen Storage (UHS).

In other words, is the energy that depends of the geological conditions to be produced.

Geothermal Energy

Pyroclastic volcanic reservoir

Effusive volcanic seal

Carbon capture, utilisation and storage (CCUS)

CO2 can be converted back to energy!

Compressed Air Energy Storage (CAES)

Pyroclastic volcanic reservoir

?

Effusive volcanic seal

ф: 3.42 % К: 0.006 mD

Geological storage of hydrogen

Four underground hydrogen sites in UK and USA.

Localisation	Clemens Dome (US)	Moss Bluff (US)	Spindletop (US)	Teeside (UK)
Operator	Conoco Philips	Praxair	Air Liquide	Sabic
Start	1983	2007	2014	1972
Volume (10 ³ m ³)	580	566	>580	3*70
Pressure (bar)	70-135	55- 1 52	Confidential	45
Energy (GWh)	92	120	>120	25

Hydrogen storage in volcanic rocks?

Geological storage of hydrogen in New Zealand

UNIVERSITY OF CANTERBURY CONFIDENTIAL DOCUMENT

Geoenergy: TAKE-HOME MESSAGE

Combined systems will play important role to supply affordable, clean and reliable energy systems in the future. Volcanoes and volcanic rocks can provide ideal conditions for many of these systems.

Wrapping-up

genesis

classification

Volcanic reservoirs

Fracture porosity: 7.3 %

Mineral dissolution: 14.8 %

Matrix porosity: 7%

Seismic reflection

Geoenergy

Volcanic rocks as petroleum reservoirs and their role in the emerging renewable energy industry

Dr Alan Bischoff University of Canterbury, New Zealand

2020 Summer Academic Lecture activity for Graduate Students China University of Petroleum

